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I N T R O D U C T I O N  

Several years ago prominent scientists had much discussion about the correct form of two-phase 
flow equations. Mainly two approaches of modelling two-phase flows can be distinguished. One 
approach, the two-fluid model, considers two-phase flow as a flow of two mutually interacting 
continua. The mathematical derivation yields a set of equations which can be regarded as a double 
set of one-phase flow equations with several additional terms describing the interaction (Drew 1983; 
Van den Akker 1986). 

The other approach treats two-phase flow from a suspension point of view. Herein the flow is 
regarded as one continuum. An equation for the mixture momentum can be derived which is 
essentially the same as the well-known Navier-Stokes equation for single-phase flow. When the 
mixture velocity in the suspension equation is separated into the individual velocities of the two 
phases, the so-called inertial coupling force arises. Soo (1976) and Chao et al. (1978) presented a 
formulation of this inertial coupling force. Furthermore, they suggest a separation of  this inertial 
coupling force into two parts which should be applied in the momentum equations of the individual 
phases. 

In this paper the inertial coupling forces to be applied in the momentum equations of 
the individual phases are derived. The interphase mass transfer terms are considered too. 
The expressions found from this strict mathematical derivation differ from those proposed by 
Soo (1976) and Chao et al. (1978). Objections to the equations presented by Soo (1976) and by 
Chao et al. (1978) have been raised by Crowe (1978) and by No (1982). However, these equations 
did not concern the derivation of the inertial coupling forces. 

THE R E Y N O L D S  T R A N S P O R T  T H E O R E M  

In deriving an expression for the inertial coupling forces, use is made of a fundamental theorem 
of the continuum mechanics, the transport theorem of Reynolds, which reads: 

- ~ + ~o d ive  dV [1] 

This theorem expresses in a moving frame of  reference the rate of change, D T /Dt ,  of some quantity 
~0 integrated over a control volume B which travels with the flow at velocity 5 [see for example 
Becker et al. (1975)]. In the above equation T is defined by: 

~u(t) = t q' dV [2] 
d B  

929 



930 BRIEF COMMUNICATION 

T H E  D E R I V A T I O N  OF THE I N E R T I A L  C O U P L I N G  F O R C E  

When the two-phase flow is regarded as a mixture, the velocity 6 in [1] should be the velocity 
of  the mixture. One should be aware of  this consequence of the adoption of the suspension 
approach for now every quantity ~0 is transported by the mixture velocity. This mixture velocity, 
denoted as On,, is usually defined as the mass weighted mean of the velocities (ffj, if2) of  the 
individual phases [e.g. Chao et al. (1978) but also Hinze (1962)]. The relation for ~Tm reads: 

P l  t32 - -  
u~ - - -  ul -t- - -  Uz [3] 

Pl q'- P2 Pl q-" P2 

Herein, p denotes a generalized density, which means the material density of  the relevant phase 
multiplied by the volume fraction of that phase. The individual phases are distinguished by the 
subscripts 1 and 2. 

The momentum equation for the first phase can be derived by defining the ~0 in [1] to be p~uT. 
This means that the transport of  the first phase momentum transported by the suspension is 
described by: 

- p ,u~dV= \ Dt +P'gdiv~mm dV [4] 
Dt Dt ~ 

The variation in time of the first phase momentum within the control volume B should be caused 
by volume forces and surface forces integrated over the control volume B. Assume that all those 
forces can be written so that the variation in momentum can be integrated over the same control 
volume B as all those forces, then [4] may be written as: 

f B (  D p I ~  + p , ~ d i v  ~mm) dV f ) d V  [5] 
\ Dt = j ~ (  ..... 

In this equation the . . . .  stands for all possible forces influencing the first phase momentum 
transport. Because B is an arbitrary control volume, [5] may also be written as: 

Dpl u~ 
- -  + p , ~  div b~m = ( ..... ) [6] 

Dt 

For the derivation of the coupling force, it is not necessary to specify the right-hand side of  [6]. 
Therefore, the left-hand side of [6] will be considered now. Using the definition of the Lagrangian 
derivative, D/Dt = c a/'& + ~. ~,.,'~.f, [6] may be written as: 

a p , <  
- -  + Urn" V p , <  + p , g V "  ~ = ( ..... ) [7] 

?t 

Using the relation (grad ~p). : + ~0 div ( = div q~f, the second and third term of [7] can be joined: 

~p~ ,  
a t  + v . ~ ( p , ~ )  = ( . . . . .  ) [81 

In index notation the left-hand side of [8] for the velocity in the /-direction reads: 

~?Pl u l ,  c'~ 
a ~  + ~x~ (p' u,, Um.X ) [9] 

Here the summation convention should be applied to the index k. Using [3], [9] can be rewritten 
a s :  

eplut~ + ~  PtUli [10] 
~?t cxk k p~ + _ 
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rewriting: 

rewriting: 

63----t- + (Pl + Pz) Pt Ut~U~k + pzUI~Uzk [I 1] 

63p, u , ,+ O__(p,+p2--P2 J+-5~xk~,(P'+P2) " =kJ [12] 

and finally: 

O,u,, ± (  e,p _ ) ~t aXk (p,u,,U,k) + aXk \(p, + P2) U,,(U2k -- U,k) [! 3] 

The first and second terms in [13] are readily identified as the well-known formulation of the 
advective and convective transport of the first phase momentum. The third term is the inertial 
coupling term. By interchanging the indices 1 and 2, the relation for the second phase is easily 
deduced to be: 

63 63 ~t - I/ P2Pl Uzi(U2k" Ulk)) 63PzU2--i + ~X k (P2U2iUzk) . . . .  . [14] 
at 63x, ~,p, + p 9  

Combining [13] and [14], an expression for the mixture momentum is obtained and for the 
combined coupling force that should appear in the mixture equation. Using the Lagrangian 
derivative, the combined expression reads: 

D2p2u2iDt 63Xk63 { PlP2 . . .  ) Di p~ u~i + _ _  
D~ 

The first two terms are clearly the contributions of the two phases on the analogy of the classical 
single-phase momentum equation. Note that the Lagrangian timescale for the transport of pu~ is 
not necessarily equal to the timescale for p ~ .  In [4] the Lagrangian timescale was related to the 
transport of the mixture with velocity ~mm- The third term is the combined coupling force. This term 
is exactly the same as the one presented by Soo (1976) and Chao et al. (1978). They obtained the 
combined coupling force by writing down at once the momentum equation for the suspension. 
Furthermore, they proposed a separation of this combined term into two terms for the individual 
momentum equations which lacks a sound basis. Their separated coupling forces differ from the 
above derived separated coupling forces. In the papers of Soo and Chao no evidence is given that 
justifies their separation of the combined coupling force. The above derivation, on the contrary, 
shows clearly how the expression for the separated inertial coupling force is obtained. 

THE V A L I D I T Y  OF THE M I X T U R E  APPROACH 

Although this paper does not intend to present a thorough discussion on the question which 
two-phase flow approach should be applied, some remarks may be made. The crucial assumption 
in the above presented derivation is the use of  the mixture velocity in the transport equation [4]. 
This assumption determines the occurrence of  the inertial coupling force. From a mathematical 
point of  view there is no problem regarding the first phase momentum as a quantity of the mixture 
flow and transport this quantity with the mixture velocity, but from a physical point of view this 
assumption may be questionable. 

A model for dispersed two-phase flow, derived from a physical point of view, has been proposed 
by Wailis (1989, 1991). According to the model of Wallis the total kinetic energy of  the two-phase 
flow system may exceed the sum of  the kinetic energy of the individual phases. This is because the 
continuous phase has to flow around the dispersed contaminants present in the flow. The total 
momentum of the system, however, is merely the sum of the momentum of the two phases because 
in Wallis' approach no mechanisms are present which allow another result. In the suspension 
model, on the other hand, the inertial coupling force in [1 5] represents extra momentum above the 
sum of  the momentum of the two phases. This inertial coupling force, however, arises as a 
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straightforward consequence of the suspension approach itself. The model resulting from the 
approach taken by Wallis (1989) obviously conflicts with the suspension approach. 

From a physical point of  view, the starting-points of the model of Wallis are more realistic than 
the above taken approach and therefore the occurrence of inertial coupling forces in the momentum 
balance equation for two-phase flow might be rejected. Consequently, the suspension approach 
might be regarded as inferior to the two-fluid approach to model two-phase flows because the 
definition of a mixture velocity leads to inappropriate results. 

THE I N T E R P H A S E  MASS T R A N S P O R T  

The interphase mass transfer has also been considered by Soo (1976) and Chao et al. (1978). 
Again their proposed term to model interphase mass transfer in the momentum equations of  the 
individual phases seems to be incorrect. The reason might be that one should realize that these mass 
transfer terms in the individual momentum equations have nothing to do with inertial coupling 
as the inertial coupling arises from the non-linear convective momentum transport term as shown 
in the above presented derivation. 

The extra term due to mass transfer can be deduced by manipulating the momentum equation 
for one phase in the same way as can be done for the single-phase flow momentum equation. A 
term identical to the left-hand side of  the mass balance equation can be extracted. The mass balance 
for phase one including mass transfer reads: 

?,p~ ?~PlUlk 
+ - F [16] 

0t /~xk 

Here F denotes the mass transfer rate between the phases. Rewriting [13], the mass balance term 
appears in square brackets: 

~u,, t?U,i FCIgL +Q[9, UI~-~ ") PIPx 
p , ~ j T + p , u , k ~ + u , s L  ~ t ?xk j +  exk(p, +p:)Ul,(ux u,~) [17] 

It is obvious that the term in brackets equals the rate of mass transfer per unit volume F when 
interphase mass transfer is considered. This results in a term in the first phase momentum equation 
due to mass transfer which reads: 

UliF [18] 

C O N C L U S I O N S  

This paper presents mathematical derivations of the interphase coupling terms for mass and 
momentum,  which arise in the two-phase flow equations when the suspension approach is followed. 
Although the interphase coupling terms presented by Soo (1976) and Chao et al. (1978) for the 
suspension momentum equations are correct, this paper shows that their inertial coupling forces 
and interphase mass transfer terms which appear in the momentum equations of the individual 
phases are not correct. It has been discussed that the occurrence of the inertial coupling forces seems 
to be incorrect from a physical point of  view, and consequently the suspension approach might 
be concluded to be inferior to the two fluid approach. 
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